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Abstract

Two correlations of measurements of entrainment for annular flow in horizontal pipes are presented for
liquids with viscosities close to that of water. Entrainment is considered to result from a balance between
the rate of atomization of the liquid layer flowing along the pipe wall and the rate of deposition of drops. At
low gas velocities, gravitational settling controls the rate of deposition. At high gas velocities, droplet
turbulence controls deposition. The first approach uses an empirical relation for entrainment in horizontal
pipes at low gas velocities and an empirical relation for entrainment in vertical pipes at high gas velocities.
The second uses a theoretical analysis for the rate of deposition that is valid both for high and low gas
velocities. Present practice has been to use correlations that have been developed for vertical annular flows.
They are faulty because they do not directly include the effects of gravitational settling. � 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Entrainment in annular flows is defined as the ratio of the mass flow of drops in the gas to the
total mass flow of liquid, E ¼ WLE=WL. An ability to predict E is critical to understanding the
behavior of annular flows and to obtaining more reliable relations for liquid holdup and frictional
pressure losses.

A theoretical approach in vertical flows involves the interpretation of entrainment as resulting
from a balance of the rate of atomization of the liquid layer flowing along the wall, RA, and the
rate of deposition of drops, RD. The following equation has been developed by Dallman et al.
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(1979), by Lopez de Bertodano and Assad (1997), Lopez de Bertodano et al. (1994), Schadel et al.
(1990) and by Assad et al. (1998) to represent the rate of atomization for vertical systems with
small liquid flows:

RA ¼ k0AU
2
GðqGqLÞ

1=2

r
ðWLF �WLFCÞ

P
; ð1Þ

where WLFC is the critical film flow below which atomization does not occur, P is the perimeter of
the pipe, UG is the gas velocity, r is the surface tension, qG is the gas density, qL is the liquid
density and WLF ¼ WL � WLE. The rate of deposition at small concentrations of drops is usually
defined as being linearly dependent on the drop concentration

RD ¼ kDCB ¼ kD
WLE

QGS

� �
; ð2Þ

where QG is the volumetric flow of gas, S is the ratio of the drop velocity to the gas velocity and CB

is the bulk concentration of drops.
For vertical flows, the following relation is derived for entrainment under the condition that

RA ¼ RD, provided the liquid viscosity is close to that for water:

ðE=EMÞ
1� ðE=EMÞ

¼ k0ADU
3
GSðqGqLÞ

1=2

4kDr
; ð3Þ

where k0A is a dimensionless constant and the maximum entrainment, EM, is given by

EM ¼ 1� WLFC

WL

: ð4Þ

An alternate formulation of Eq. (1) has been used for which UG is replaced by ðUG � UGCÞ, where
UGC is the critical gas velocity below which no entrainment is observed. There is no physical
reason for doing this in horizontal flows. In these cases, UGC depends on gravitational settling; it is
quite different from the critical gas velocity observed in vertical flows.

The implementation of Eqs. (3) and (4) for vertical flows requires the use of the theoretical
result that kD varies with the root-mean square of the velocity fluctuations in the direction of the
wall, ðm2pÞ

1=2
. The relation of ðm2pÞ

1=2
to system variables is complicated so, from the viewpoint of

correlating data, the assumption has been made that UG can be substituted for kD=S. Data for air–
water in vertical pipes with diameters of 2.54–5.72 cm are represented reasonably well with the
equation

ðE=EMÞ
1� ðE=EMÞ

¼ A1

DU 2
GðqGqLÞ

1=2

r
: ð5Þ

Eqs. (3) and (5) are found to be useful over a much larger range of liquid flows than should be
expected. The explanation for this is that the decreases of k0A and kD with increasing WL tend to
compensate.

This paper employs the approach outlined above to examine entrainment measurements in
horizontal flows. Previous attempts to develop a correlation have involved the direct use of
equations derived for vertical flows. The work of Dallman et al. (1984) is an example. Eq. (3) with
k0A=kDr ¼ constant had been used by Dallman et al. (1979) to correlate the measurements by
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Cousins et al. (1965) of entrainment for air and water flowing upward in a 9.5 mm pipe (Dallman
et al., 1979).

Therefore, this equation was an attractive choice to interpret their measurements of E for air
and water flowing in horizontal 2.31 and 5.08 cm pipes, since it predicts maxima at large gas and
liquid flows when measurements are made at several constant liquid rates or several constant gas
rates. However, they found that Eq. (3) could not predict the stronger influence of gas velocity and
the weaker influence of pipe diameter that was observed in horizontal flows. They, therefore,
correlated their measurements by assuming

E=EM

1� ðE=EMÞ
¼ f

k0ADU
3
GSðqGqLÞ

1=2

4kDr

" #
: ð6Þ

This is, clearly, an empirical equation which has little chance to represent results for conditions
different from those of the experiments from which it was derived.

Dallman et al. (1984) point out that Eq. (3) with k0A=kD derived from experiments with vertical
flows fails because this approach does not, directly, take account of the influence of gravitational
settling on deposition. Williams et al. (1996) presented measurements of E for air and water
flowing in a horizontal 9.53 cm pipe. These more clearly show the differences between the behavior
of horizontal and vertical systems. The present paper is a continuation of the work of Williams
et al., in that it introduces the effect of gravitational settling through a theoretical analysis of the
relation of kD to fluid turbulence and to gravitational settling (Lee et al., 1989a,b; Hay et al., 1996;
Hanratty et al., 2000). The resulting predictive method represents a considerable advancement
over the empirical correlation used by Dallman et al. (1984).

2. Entrainment equation for horizontal flows

In applying Eq. (3) to horizontal flows one needs to recognize that gravity causes an asym-
metric distribution of drops in the gas phase and of the layer flowing along the wall. At large
enough gas velocities, asymmetry disappears and one might expect that the equations for vertical
flows would be applicable. (However, this condition is difficult to realize in most applications in
large diameter pipes.) At low gas velocities, gravity becomes more important so asymmetries need
to be taken into account. Gravitational settling can, also, increase kD over what is observed for
vertical flows. Consequently, the entrainment can be smaller and can be more strongly affected by
gas velocity (since dropsize decreases with increasing gas velocity).

The approach employed by Williams et al. (1996) is to modify Eq. (3) so that it can be used for
horizontal flows. The rate of atomization varies around the circumference. The assumption is
made that the local rates are described by Eq. (1). If CðhÞ equals the flow in the wall film per unit
length at a given circumferential position, then the local rate of atomization is given as

RA ¼ k0AU
2
GðqGqLÞ

1=2

r
ðC � CcÞ ð7Þ

if C > Cc. For C6Cc, the rate of atomization is zero. The average RA around the circumference,
defined by
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hRAi ¼
1

pD

Z p

0

DRA dh; ð8Þ

is given as

hRAi ¼
k0AU

2
GðqGqLÞ

1=2

r
WLF

P

�
� C�

c

�
; ð9Þ

where

C�
c ¼ Cc �

1

p

Z p

hc

ðCc � CÞdh: ð10Þ

Here, hc is the angular location at which C ¼ Cc. If C > Cc around the whole circumference hc ¼ p
and C�

c ¼ C. If C < Cc over a portion of the circumference from hc to p, then C�
c < C.

Measurements of concentration profiles of drops in vertical flows (Hay et al., 1996) reveal that,
under fully developed conditions, the concentration is uniform over the pipe cross-section so that
the bulk concentration equals the concentration at the wall. This is not the case for horizontal
flows. The local rate of deposition is, therefore, represented as

RD ¼ kD
CW

CB

� �
CB ¼ kD

CW

CB

WLE

QGS

� �
; ð11Þ

where horizontal flows RD, kD and CW vary around the pipe circumference. Therefore, the spa-
tially averaged RD is given as

hRDi ¼ kD
CW

CB

� 	
WLE

QGS
: ð12Þ

Under fully developed conditions hRAi ¼ hRDi. The following equation, analogous to Eq. (3), can
be developed:

ðE=EMÞ
1� ðE=EMÞ

¼ k0ADU
3
GSðqLqGÞ

1=2

4hkDðCW=CBÞir
; ð13Þ

where

EM ¼ 1� pDC�
c

WL

: ð14Þ

For low viscosity liquids the initiation atomization occurs when disturbance waves appear on
the liquid layer. Measurements of Andreussi et al. (1985) of the liquid flow needed to initiate
disturbance waves in vertical flows can be used to calculate the critical flow per unit length,
Cc ¼ WLFC=pD. These are represented by the following equation:

ReLFC ¼ 7:30ðlog10 xÞ3 þ 44:2ðlog10 xÞ2 � 263ðlog10 xÞ þ 439; ð15Þ
where

ReLFC ¼ 4Cc

lL

; ð16Þ

x ¼ lL

lG

ffiffiffiffiffiffi
qG

qL

r
: ð17Þ
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For air and water at standard conditions, x ¼ 1:861 and ReLFC ¼ 370. Measurements in hor-
izontal flows by Dallman (1978) and by Laurinat (1982) show larger values of Cc by a factor of
about 1.3, probably because of the asymmetry of the liquid layer. A general relation representing
their results is not available, so Eq. (16) is used in the calculations presented in this paper.

Eq. (15) was derived from measurements for x ¼ 1:8 to 28. It should not be used outside this
range. For large lL (or large x) disturbance waves no longer exist on the film so Eq. (15) would
not describe a critical liquid flow. In fact, Eq. (1) probably cannot be used to represent the rate of
atomization at large lL (see the paper by Hoogendorn and Welling, 1979, which suggests that RA

varies as W 2
LF).

Eq. (13) will be used to interpret experimental results. Section 3 summarizes available data and
develops an empirical correlation which accounts for the effect of gravitational settling. Section 4
incorporates recently available theoretical results on kD into Eq. (13). Section 5 compares theo-
retical calculations of entrainment with available data. Section 6 uses theoretical and empirical
correlations, developed with the help of measurements for air and water flowing in pipes with
diameters of 2.31, 5.08 and 9.53 cm, to predict entrainment in a horizontal natural gas pipeline.
The conditions in this system are quite different from what is found for air and water flowing
under atmospheric conditions. The gas density is larger; the surface tension is smaller; the pipe
diameter is larger. Unfortunately, we do not have, at our disposal, data to test the predictions.
The merit of doing this calculation is that it illustrates how one can utilize available knowledge
about entrainment.

The results presented in this paper are a best guess at an approach which can have general
usage. We do not consider it to be final because of the limited amount of information that is used.
One can expect the approach to be amended with the availability of a better understanding of the
droplet exchange process, of dropsizes, of the effect of gravity on the distribution of the liquid
phase, and of the effect of fluid properties.

3. Experimental results

3.1. Correlating equations

Measurements by Williams (1986), Laurinat (1982), Dallman (1978) and by Paras and Kara-
belas (1991) are summarized in Table 1. They are for the air–water system and cover pipe di-
ameters of 2.31–9.53 cm, gas velocities of 11–131 m/s and gas densities of 1.26–2.75 kg=m3.

These measurements were carried out at low enough gas velocities that gravitational settling is a
major contributor to deposition. Therefore, for the purpose of examining the influence of system
variables on entrainment, Eq. (13) is simplified by substituting the terminal velocity, uT, for
hkDðCW=CBÞi and by taking S as constant; i.e.,

ðE=EMÞ
1� ðE=EMÞ

¼ A2

DU 3
Gq1=2

L q1=2
G

ruT

 !
: ð18Þ

The use of Eq. (18), therefore, presumes a large value of uT=ðv2pÞ
1=2

.
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The terminal velocity for a spherical drop is given as

u2T ¼ 4dgqL

3CDqG

; ð19Þ

where d is the drop diameter and CD is the drag-coefficient, given as

CD 
 Re�m
p ð20Þ

with Rep ¼ duTqG=lG. For Newton’s law m ¼ 0. For Stokes law m ¼ 1 and

CD ¼ 24

Rep
: ð21Þ

For 1:926Rep < 500, m can be approximated as 0.6; i.e.,

CD ¼ 18:5

Re0:6p

: ð22Þ

The substitution of Eqs. (19) and (20) into Eq. (18) gives

ðE=EMÞ
1� ðE=EMÞ

¼ A2

DU 3
Gq0:5

L q0:5
G

r

� �
q1�m
G lm

G

d1þmgqL

� �1=ð2�mÞ

: ð23Þ

3.2. Evaluation of the drop size

Measurements of drop size, d, in horizontal gas–liquid flows are sparse, so results for vertical
configurations were used. A first guess might be that qGU

2
Gd=r is a constant. However, experi-

ments show that d varies roughly as U�1
G , rather than U�2

G .
Tatterson et al. (1977) have provided a theory which suggests that

qGU
2
Gd

r

� �
d
k

� �
¼ constant; ð24Þ

where k is the wavelength of the waves that produces the drops. This result suggests the following
equations which give d 
 U�1

G :

Table 1

Experiments that are used

Williams

(1986, 1990)

Laurinat (1982) Dallman (1978) Paras and Karabelas

(1991)

Fluids Air–water Air–water Air–water Air–water

D (cm) 9.53 5.08 2.31 5.08

UG (m/s) 26–88 11–131 15–88 31–67

WL (kg/s) 0.12–0.86 0.033–0.97 0.003–0.25 0.04–0.39

qG ðkg=m3Þ 1.3–1.85 2.05 1.26–2.75 1.3–2.3

No. of runs 29 52 114 17
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qGU
2
Gd32
r

� �
d32
D

� �
¼ 0:0091 ð25Þ

and

qGU
2
Gd32
r

� �
d32
kA

� �
¼ 0:14; ð26Þ

where kA is a length scale defined by Azzopardi (1985) as

kA ¼ r
qLg

� �0:5

: ð27Þ

Annular flows contain a distribution of drop sizes. The Sauter-mean diameter, d32, is represen-
tative of the size of the larger drops that contain most of the volume (see Tatterson et al., 1977).
Eq. (25) differs from Eq. (26), in that it states that d32 increases with pipe diameter.

The constants on the right-hand sides of Eqs. (25) and (26) were specified by considering the
measurements of Hay et al. (1996) for air and water flowing in a vertical pipe. These are close to a
correlation presented by Azzopardi (1985).

3.3. Effect of liquid flow, WL

Williams measured entrainment by determining local droplet fluxes with a sampling tube, and
integrating over the space occupied by the gas (cf. Williams et al., 1996; Williams, 1986; Williams,
1990). The system was air–water flowing at atmospheric pressure in a horizontal pipe with a
diameter of 9.53 cm. The results are presented in Fig. 1 as a plot of E=EM versus WL, with gas

Fig. 1. Measurements of E=EM obtained by Williams (1986, 1990) for air and water flowing in a horizontal pipe.
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velocity as a parameter. In calculating EM, the term C�
c was set equal to Cc. A value of

WLFC ¼ 0:025 kg=s was obtained from Eq. (15). The main feature of Fig. 1 is that E=EM is weakly
dependent on liquid flow and strongly affected by gas velocity, as predicted by Eq. (13). The
extrapolation of these results to E ¼ 0 gives a rough estimate of a critical gas velocity of
UGC ffi 21 m=s.

The explanation of the effects of WL, that are observed, is complicated. For example, the drop in
E at large WL for UG ¼ 45 and 67 m/s has been suggested by Williams et al. (1996) to be due to a
decrease in k0A at large WLF. Another explanation is the existence of secondary flows in the gas at
large liquid flows in this range of gas velocities (Dykhno et al., 1994). These could increase the rate
of deposition and, therefore, decrease the entrainment. Observed changes of E=EM with changes in
WL could also result from experimental error associated with the methods used to obtain the total
droplet flux from measured local values at a limited number of positions.

In studies in a 2.31 cm pipe (Dallman, 1978) and in a 5.08 cm pipe (Laurinat, 1982; Laurinat
et al., 1984) the flow of the liquid wall layer was measured by withdrawing it through a porous
wall. The entrainment is obtained by subtracting the measured WLF from WL. This is a more
difficult measurement in horizontal flows than in vertical flows because the wall layer is distributed
asymmetrically and because it can be quite thick at the bottom of the pipe. At low WL, close to
WLFC, this technique provides erratic results. At very large WLF the complete removal of the liquid
from the wall is very difficult.

Results obtained in 2.31 and 5.08 cm pipes are similar to what is found for a 9.53 cm pipe, in
that measured E=EM are much more sensitive to changes in the flow of the gas than to changes in
the flow of the liquid. There also is a tendency for E=EM to decrease for large WL at intermediate
gas velocities. This behavior is somewhat stronger than what is observed for a pipe with D ¼ 9:53
cm. A rough estimate of a critical gas velocity of 15 m/s is obtained for 2.31 and 5.08 cm
pipes.

An important factor in understanding measurements of entrainment is the asymmetrical dis-
tribution of the liquid. Fig. 2(a) gives plots of the ratio of the height of the wall layer at the bottom
of the pipe, mbot, to the average height around the circumference for the experiments represented
in Fig. 1 (Williams, 1990). A striking aspect of these results is the increase in asymmetry with
decreasing UG or decreasing UG=ðgDÞ0:5. At UG ¼ 88 m/s the layer is close to being uniformly
distributed in a 9.53 cm pipe. For UG ¼ 31 and 37 m/s, the flow is highly asymmetric so gravity is
having a very strong effect. Values of mbot=hmi measured by Dallman (1978) and by Laurinat
(1982) for air and water flowing in 2.31 and 5.08 cm pipes are given in Figs. 2(b) and (c).

3.4. Effect of gas velocity UG and the definition of hE=EMi

At present, it is not possible to provide an explanation for the observed effects of WL on E=EM.
Therefore, measured values, for different liquid flows, at a given UG were averaged and a cor-
relation that represents the effect of gas velocity on this average was sought. In doing this, values
of E=EM determined at WL close to WLFC were ignored, because of concern over their accuracy.
Table 2 summarizes the hE=EMi obtained in this way. The WL given in the table represent the
midrange over which the average E=EM was calculated for a given UG. This procedure greatly
reduces the number of test runs that are directly used, but it allows a clearer definition of the effect
of gas velocity.
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Fig. 2. Measurements of the ratio of the liquid height at the bottom of the pipe to the average liquid height: (a) air–

water in a horizontal pipe with D ¼ 9:53 cm; (b) air–water, with D ¼ 5:08 cm; (c) air–water, with D ¼ 2:31 cm.

Table 2

Values of hE=Emi ¼ the average E=EM for different liquid flows

WL ¼ 0:64 kg/s

(Williams, 1990)

WL ¼ 0:31 kg/s

(Laurinat, 1982)

WL ¼ 0:1134 kg/s

(Dallman, 1978)

WL ¼ 0:3 kg/s (Paras and

Karabelas, 1991)

UG (m/s) hE=EMi UG (m/s) hE=EMi UG (m/s) hE=EMi UG (m/s) hE=EMi
26 0.068 18 0.064 15 0.04 31 0.24

31 0.15 24 0.24 22 0.098 45 0.75

37 0.3 34 0.56 33 0.36 48 0.86

45 0.54 44 0.7 44 0.72

67 0.815 57 0.9 55 0.88

88 0.9 70 ca. 1 88 ca. 1

103 ca. 1

131 ca. 1
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Figs. 3(a) and (b) compare values of E calculated from the hE=EMi listed in Table 2 with
measurements of E in a 9.53 cm pipe and in a 2.31 cm pipe. The maximum entrainments were
calculated with (4) using a WLFC obtained from Eq. (15) and the values of WL listed in Table 2. The
characterization of the measurements in terms of hE=EMi as a function of UG does a good job of
representing the data, except for WL close to WLFC. The erratic behavior close to WLFC could be
due, partially, to the use of a constant for C�

c , rather than Eq. (10).
Values of E=EM=1� ðE=EMÞ for 9.53, 5.08 and 2.31 cm pipes are plotted in Fig. 4 versus q0:5

G UG,
where qG is the gas density that prevailed in the experiments represented by that data point. The
E=EM are the averages for a given gas velocity, defined above and presented in Table 2. Two sets

Fig. 3. Values of E calculated from hE=EMi ¼ average of E=EM for a number of liquid flows (listed in Table 2): (a)

D ¼ 9:53 cm; (b) D ¼ 2:31 cm.
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of data for a 5.08 cm pipe are presented. One was obtained by Laurinat (1982) and the other, by
Paras and Karabelas (1991). The three lines going through the data were calculated with Eq. (18)
for D ¼ 9:53, 5.08, 2.31 cm, using A2 ¼ 9� 10�8 and the values of qG listed in the figure. The drop
sizes, needed to calculate uT, are the d32 defined by Eq. (25). These roughly vary as U�1

G . If Stokes
law is used ðm ¼ 1Þ, the right-hand side of Eq. (23) gives ðE=EMÞ=1� ðE=EMÞ varying as U 5

G. An
intermediate behavior for CD (m ¼ 0:6) gives a dependency of U 4:2

G . The change in slope of the
lines calculated from Eq. (18) represents a change from Stokes law at large UG to the intermediate
relation for CD at small UG.

The three lines at the top part of Fig. 4 represent the entrainment that would be observed for
gas–liquid flow in vertical tubes. They were calculated with Eq. (5), using A1 ¼ 8:8� 10�5. This
value is suggested from the theoretical calculations presented in Section 7. The important point to
be made in comparing these lines with the data in Fig. 4 is that correlations based on results in
vertical pipes will overpredict the entrainment and will not capture the strong influence of gas
velocity observed in horizontal pipes.

The favorable comparison of the results with Eq. (18) indicates that the influence of gravita-
tional settling needs to be considered in order to capture the influence of gas velocity at small gas
velocities. For very large gas velocities the drops should be uniformly distributed and entrainment
should be described by equations developed for vertical pipes. However, under these circum-
stances, E=EM is close to unity.

The results in Figs. 2(a)–(c) for the air–water system show that the high velocity asymptotic
behavior should be approached for UG=ðgDÞ0:5 approximately equal to 190, that is at gas velocities
of 90–180 m/s as D varies from 2.31 to 9.53 cm.

Fig. 4. Comparison of measurements of ðE=EMÞ=1� ðE=EMÞ with empirical equation (18) and d32 given by Eq. (25).

The data points are the averages for a number of liquid flows given in Table 2.
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3.5. Effect of pipe diameter

The measurements in Fig. 4 suggest a weak dependency of ðE=EMÞ=1� ðE=EMÞ on pipe di-
ameter when comparisons are made at the same value of the E=EM and the data are plotted
against q0:5

G UG. They indicate a decrease in the value of q0:5
G UG is needed to maintain a given level

of entrainment with a change of D from 2.3 to 5.08 cm and an increase, with a change from 5.08 to
9.53 cm. The results for D ¼ 2:31 and 5.08 cm are the same. However, the use of q0:5

G in the ab-
scissa is not based on any theoretical arguments. The apparent effect of pipe diameter, therefore,
depends on the exponent that is chosen for qG. For example, as can be seen from Table 2, a
different trend would be observed if only UG were used as the abscissa. The data for D ¼ 2:31 cm
and D ¼ 5:08 cm would then be closer together and larger values of UG would be needed to obtain
the same E=EM for D ¼ 9:53 cm.

The influence of pipe diameter in Eq. (18) comes from the appearance of D in the numerator
and the dependency of uT on D. Eqs. (18) and (23) give ðE=EMÞ=1� ðE=EMÞ varying with D=d1:1 if
CD is in the intermediate range and with D=d2 if CD is given by Stokes law. If d is independent of
pipe diameter (Eq. (26)) a stronger effect of D than shown in Fig. 4 is predicted with Eq. (18). The
lines in Fig. 4 were obtained by using Eq. (25), which gives d increasing as D1=2. Eqs. (18) and (23)
then predict an insensitivity to D seen in the experimental data. One could conclude, from the
comparisons of Eq. (18) with the data, that drop size increases with D, as predicted by Eq. (25).
This might not be warranted because the substitution of uT for hkDðCW=CBÞi in Eq. (13) is an
oversimplification.

Because of the strong effect of gas velocity on E=EM a greater sensitivity to changes in pipe
diameter is seen if comparisons of measured E=EM are made at the same value of q0:5

G UG so, in this
context, the development of a sound theoretical understanding of the effects of D and qG is
critically important. This theory needs to take into account the asymmetric distribution of liquid,
which increases with increasing D, and to have a correct representation of the drop size.

4. Theoretical approach

4.1. Prediction of kD

The local rate of deposition at a given circumferential location, in the units of mass per unit
time per unit area, may be described as the product of the average velocity of drops in the di-
rection of the wall, VW, and the concentration of drops at the wall, in the units of mass per unit
volume.

RD ¼ VWCW: ð28Þ
A comparison with Eq. (11) defines kD as equal to VW. The variation of kD with h is, therefore,
described by the variation of VW because of gravitational effects.

A simplifying assumption is that the drops have come to a stationary state with the fluid
turbulence. Their velocities would, then, have a mean value in the radial direction, uT cos h, due to
gravitational settling. Here, h ¼ 0 is at the bottom of the pipe where the mean velocity equals uT.
At the top of the pipe, it equals �uT.
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The droplets start their free-flight to the wall from outside the viscous wall layer, so the non-
homogeneities in the fluid turbulence close to the boundary can be ignored. The distribution of the
velocity fluctuations in a direction normal to the wall is assumed to be Gaussian, so that

pðxÞ ¼ 1

ð2pÞ1=2rp

exp

"
� ðx� lÞ2

2r2
p

#
; ð29Þ

where x ¼ l þ vp, rp ¼ ðv2pÞ
1=2

. For a vertical flow, l ¼ 0; for a horizontal flow, l ¼ uT cos h. The
local kDðhÞ is then given as

kDðhÞ ¼ VW ¼
Z 1

0

xpðxÞdx: ð30Þ

By substituting Eq. (28) into Eq. (29) one obtains

VW ¼
Z x¼1

x¼0

ðx� lÞffiffiffiffiffiffi
2p

p
r

exp

"
� ðx� lÞ2

2r2
p

#
dxþ

Z x¼1

x¼0

lffiffiffiffiffiffi
2p

p
rp

exp
�ðx� lÞ2

2r2
p

" #
dx

¼
Z 1

�l

zffiffiffiffiffiffi
2p

p
rp

exp
�z2

2r2
p

" #
dzþ

Z 1

�l

lffiffiffiffiffiffi
2p

p
rp

exp
�z2

2r2
p

" #
dz: ð31Þ

The integral in Eq. (31) considers only positive values of x ¼ l þ vp. An integration from �1 to
þ1 gives VW ¼ l. When ðuT=rpÞ ! 0. Eq. (31) gives

VW ¼
r2
p

2p

 !0:5

ð32Þ

so that only particle turbulence is responsible for deposition. For ðuT=rpÞ ! 1,

VW ¼ uT cos h; ð33Þ
so that gravitational settling is controlling deposition. Eq. (31) gives kD=ðr2

p=2pÞ
0:5

as a function of
w ¼ uT cos h=rp. This result is plotted in Fig. 5. An expression for v2p is needed in order to use Eq.
(31) or Fig. 5.

4.2. Evaluation of r2p ¼ v2p

The turbulent motion of the drops is caused by fluid velocity fluctuations. The ability of the
drops to respond to fluid turbulence is represented by the reciprocal of the inertial time constant,
b. For drops in the Stokesian range

b ¼ 18lG

d2qL

ð34Þ

and

uT ¼ d2gðqL � qGÞ
18lG

: ð35Þ
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In general,

b ¼ 3CDqGuT
4dqL

; ð36Þ

where the average slip between the gas and the drops is set equal to the terminal velocity. For the
intermediate range of CD, where Eq. (22) is valid,

uT ¼ d1:6gðqL � qGÞ
13:9q0:4

G l0:6
G

: ð37Þ

Measurements by Lee et al. (1989a,b), for dilute concentrations of drops and for situations in
which the drops have come into equilibrium with the fluid turbulence, give

v2p ¼
bsLF

0:7þ bsLF

� �
v2G; ð38Þ

where sLF is the Lagrangian time constant characterizing the fluid turbulence and v2G ¼ r2
G is the

mean-square of the velocity fluctuations of the gas in a direction normal to the wall. The gas-
phase turbulence is given by

r2
G ¼ ð0:9v�Þ2; ð39Þ

where v� is the friction velocity

v� ¼ ðsi=qGÞ
0:5 ¼ UGðfi=2Þ0:5: ð40Þ

Fig. 5. Plot of VW=ðr2
p=2pÞ

0:5
versus u ¼ uT cos h=rp.
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The Lagrangian time constant of the gas-phase turbulence can be approximated as (Hay et al.,
1996)

sLF ¼ 0:046D
v�

: ð41Þ

For situations in which sLF is large enough compared to the inertial time constant of the fluid
(large bsLF) the particles follow the fluid turbulence and rp ¼ rG. For very small bsLF the particle
turbulence is less than the fluid turbulence

v2p ¼
bsLFv2G
0:7

: ð42Þ

Annular flows are usually characterized by bsLF ffi 0:1 so that v2p ffi 1
7
v2G.

The interfacial friction factors needed to evaluate v� are approximated by a relation suggested
by Dallman et al. (1979) for horizontal flows:

fi
fs
¼ 1
h

þ ð61F 0:5Þ2
i0:5

; ð43Þ

F ¼ lLq
0:5
G cðReLFÞ

lGq0:5
L Re0:9G

; ð44Þ

c ¼ 0:5Re0:5LF

� �3h
þ 0:028Re0:9LF

� �3i1=3
; ð45Þ

fs ¼ 0:046
4WG

pDlG

� �0:2

;

ReLF ¼ 4WLF

pDlL

¼ 4ð1� EÞWL

pDlL

:

ð46Þ

4.3. Drop size distribution

The upper-limit, log-normal distribution used by Mugele and Evans (1951) and Wicks and
Dukler (1960) was chosen to represent the distribution of drop sizes. Define the product of fv
and ddp as the fraction of the total volume contributed by drops with diameters between dp and
dp þ ddp.

fv ¼
ddpffiffiffi

p
p

dpðdm � dpÞ
exp

�
� d2

�
� d2 ln

dp
dm � dp

� ln
dvl

dm � dvl

��
: ð47Þ

Parameters dm and dvl, respectively, designate the maximum and the volume-median drop size.
The suggestions of Tatterson et al. (1977) are followed by using d ¼ 0:84 and ðdm=dvlÞ ¼ 3:6. The
volume-median diameter is related to the more commonly used Sauter-mean diameter with the
equation
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dvl ¼
d32

0:765
ð48Þ

if d ¼ 0:84 and ðdm=dvlÞ ¼ 3:6.

4.4. Concentration profiles of droplets

The specification of CWðhÞ in Eq. (13) requires the development of an equation for the con-
centration profile. Measurements by Williams (1986) and by Paras and Karabelas (1991) show
that the concentration of drops is approximately uniform in planes perpendicular to the direction
of gravity. The determination of CWðhÞ, then, requires only a calculation of CðyÞ, where y is the
vertical axis. The method used by Paras and Karabelas is followed.

A mass balance gives

dðuTCÞ
dy

þ
dðe dC

dyÞ
dy

þ 2ðRA � RDÞ
D sin2 h

¼ 0; ð49Þ

where e is turbulent diffusivity of the drops. The equation indicates that gravitational settling is
opposed by turbulent diffusion. The third term represents a source or sink of drops at the
boundary. Integration of Eq. (49) gives

e
dC
dy

þ uTC þ D
Z

RA � RD

ðD=2Þ2 � y2
dy þ B ¼ 0; ð50Þ

which can be written as

e
dC
dy

þ uTC ¼ aðyÞ; ð51Þ

aðyÞ ¼ �D
Z

RA � RD

ðD=2Þ2 � y2
� B: ð52Þ

The evaluation of Eq. (52) requires a knowledge of local values of RD and RA. This complicates the
analysis, so the simplification is made that the influence of aðyÞ can be ignored.

The integration of Eq. (51) with aðyÞ ¼ 0 and e ¼ constant gives

C ¼ C0 exp
�
�uT

e
y
�

ð53Þ

with C0 being the concentration at the bottom of the pipe, y ¼ 0. Paras and Karabelas (1991)
suggest that e ¼ 1ðD=2Þv�. However, a comparison of Eq. (53) with the experiments of Paras and
Karabelas in a 5.08 cm pipe and of Williams in a 9.53 cm pipe shows that 1 needs to vary with pipe
diameter if aðyÞ is assumed to be zero and if the above relation is used for e. Clearly, the use of
Eq. (53) must be regarded as a rough empirical fit to the data.

Figs. 6(a) and (b) show how the measurements of Williams and of Paras and Karabelas are
represented by Eq. (53) by, respectively, using 1 ¼ 0:04 and 1 ¼ 0:08. More work needs to be done
in which non-constant values of e and non-zero values of (RA � RD) are used in Eq. (49).
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5. Theoretical calculations

Eq. (13) will be compared with measurements by using the theoretical relations for kD and the
empirical relations for CW=CB developed in Section 4. The constant k0A is selected empirically. The
term to be evaluated is

kD
CW

CB

� 	
¼ 1

p

Z p

0

kDh
CW

CB

� �
dh; ð54Þ

where h is the angle measured from the bottom of the pipe and the distance from the bottom is
given as

Fig. 6. Comparison of measurements of spatial distribution of drops distribution with Eq. (53) for air–water flows: (a)

D ¼ 9:53 cm; (b) D ¼ 5:08 cm.
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y ¼ Rð1� cos hÞ ð55Þ

with R equal to the radius of the pipe. The concentration at the wall, CWðhÞ, is then given by (53)
and CW=CB is calculated as

CW

CB

¼ expð�yuT=eÞ
ð2=pÞ

R p
0
½expð�yuT=eÞ�ðsin hÞdh

ð56Þ

with y given by Eq. (55), and e ¼ �ðD=2Þv�1. Eq. (54) is then evaluated by substituting Eqs. (56)
and (30). It is noted that kDðhÞ varies with r2

p and w ¼ uT cos =rp. The influence of drop size enters
into the evaluation of uT and of rp. Smaller drops have smaller uT and larger rp.

Two approaches could be taken: The behavior of the drops could be described by assuming
they have a constant diameter equal to d32, as was done in developing an empirical relation. The
second choice is to take account of the distribution of drop sizes in a direct way

kD
CW

CB

� 	
¼
Z dm

0

kDh
CW

CB

fv ddp; ð57Þ

where fv is given by Eq. (47).
A comparison of calculated and measured E=EM is presented in Fig. 7(a) for air–water flow in

pipes with diameters of 2.31, 5.08 and 9.53 cm. Eq. (53) was used in the calculations, with 1 ¼ 0:08
for the 2.31 and the 5.08 cm pipes and with 1 ¼ 0:04 for the 9.53 cm pipe. The distribution of drop
sizes is taken into account and a value of k0A, defined in Eq. (7), of 3� 10�6 was selected so as to
provide an approximate fit to the data. When Eq. (3) with kD defined by Eq. (32) is applied to data
in vertical pipes a value k0A ¼ 1:4� 10�6 is obtained. This is smaller than the value of 3� 10�6

needed to fit the data in Fig. 7. This should not be surprising since the use of the equation for
vertical flows to represent local values of RA in horizontal flows is only an approximation.

Fig. 7(a) used Eq. (25) to calculate d32; i.e., d32 is dependent on pipe diameter. The calculations
for D ¼ 9:53 cm are below the calculations for D ¼ 2:31 cm at low UG and above them at high UG.
The calculated E=EM are larger for D ¼ 9:53 cm than for D ¼ 2:31 cm for all gas velocities.

The important result is that the theoretical calculations show a smooth transition between low
and high velocity behaviors for which ðE=EMÞ=1� ðE=EMÞ varies roughly as U 5

G and U 2
G. One is

characteristic of a system in which gravitational settling is controlling deposition. The other is
characteristic of a vertical flow. The theoretical curves capture the behaviors in the pipes with
D ¼ 2:31 cm and D ¼ 5:08 cm reasonably well. However, the theoretical curve for D ¼ 9:51 cm
lies to the left of the measurements. This difference is within the range of errors that would result
from predicting drop size and the concentration profiles of the drops.

The measurements in Fig. 7 were made under conditions that the influence of gravitational
settling was strong. Consequently, comparisons of the calculations and the experiments at large
UG are inconclusive. As mentioned above the predicted influence of UG on ðE=EMÞ=1� ðE=EMÞ is
what is expected for vertical flows. However, measurements in vertical flows lie below these
predictions. This suggests that data at large UG could go through a maximum before they reach a
condition where the behavior is the same as for vertical annular flow. However, these consider-
ations might not be of importance since the differences in ðE=EMÞ=1� ðE=EMÞ translate into small
differences in E=EM where E is large.
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6. Calculations for a natural gas

This section explores how the correlation developed from data for air and water flowing in
a horizontal pipe can be used to represent the behavior of a natural gas pipeline. Table 3
summarizes system variables used in the Bacton experiments carried out by Shell (Wu et al., 1987).
The ranges of uT=rp for the natural gas pipeline, in the annular flow regime are 0.02–0.5. This is to
be compared with uT=rp of 0.25–2.5 for air–water flow in a 9.53 cm pipe.

Fig. 7. Calculations of ðE=EMÞ=1� ðE=EMÞ using Eq. (13) with k0A ¼ 3� 10�6: (a) drop size, d32 calculated with

Eq. (25); (b) d32 calculated with Eq. (26).
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Fig. 8 presents the calculated values of ðE=EM=1� E=EMÞ over a range of q0:5
G UG where annular

flow existed. The droplet concentration profiles were obtained with Eq. (53) and d32, with Eq. (25).
The eddy diffusivity was given by e ¼ 0:04ðD=2Þv� for both the natural gas and the air–water
systems. The atomization constant, k0A ¼ 3� 10�6, is the same as determined in Section 5.

An alternate approach is to use empirical equation (18) with A2 ¼ 9� 10�8 to represent the
behavior of the natural gas pipeline at low gas velocities and empirical equation (5) with
A1 ¼ 8:8� 10�5 to represent the behavior at large gas velocities. These relations are also plotted in
Fig. 8. Good agreement between the empirical and analytical approaches is noted at low UG.
However, Eq. (5) predicts larger entrainments than are obtained with the analysis.

Calculated plots of E versus WL are presented in Fig. 9, where values of E=EM from the ana-
lytical solution were used to construct the solid curves. The dashed curves represent calculations
that use E=EM from the empirical correlations, Eqs. (18) and (5).

Table 3

Conditions in a natural gas pipeline

D (m) 0.2032

qG ðkg=m3Þ 65

Pressure (bar) 75

qL ðkg=m3Þ 720

lG (mPa s) 1� 10�5

lL (mPa s) 0. 00055

r (N/m) 0. 0118

Fig. 8. Calculations of ðE=EMÞ=1� ðE=EMÞ for a natural gas pipeline are compared with air–water flow in a 9.53 cm

pipe – the solid curves. The dashed lines represent calculations for a natural gas pipeline using empirical relations, Eqs.

(18) and (5). Eq. (25) is used to calculate d32.
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Fig. 8 indicates that the substitution of kD=S ¼ UG into Eq. (3) to obtain Eq. (5) is an over-
simplification since kD=UG is not a constant. The value of A1 ¼ 8:8� 10�5 was obtained from
calculations for the air–water flows represented in Fig. 7. A smaller A1 is needed to represent a
natural gas pipeline. A better approach would be to use Eq. (32) to calculate kD for vertical flows.
However, for the case considered, the errors in calculating the asymptotic values of
ðE=EMÞ=1� ðE=EMÞ for large UG do not translate into large errors in E, as seen in Fig. 9.

The predictions in Figs. 8 and 9 depend on the choice of an equation for d32. Somewhat dif-
ferent results would be obtained if Eq. (26) were used, instead of Eq. (25).

7. Discussion

This paper uses a limited amount of data to develop a relation for entrainment, under fully
developed conditions, when the liquid viscosity is close to that of water. The approach is to define
entrainment as a balance between the rates of atomization and deposition. The influence of fluid
properties on RA is determined from experiments on flow in vertical pipes with small diameters.
The behavior of the horizontal system is determined from experiments with air and water at
conditions close to those that prevail in the atmosphere. If UG=ðgDÞ0:5 is small, gravitational
settling will play a dominant role in determining the deposition rate. At very high UG=ðgDÞ0:5,
gravity becomes an unimportant factor so that the behavior will be close to what is observed for a
vertical pipe.

The practice of using correlations for vertical annular flows to predict entrainment in horizontal
configurations is flawed because the range of gas velocities where E changes from zero to a value

Fig. 9. Plots of E for a natural gas pipeline. The solid curves use the analytical equations. The dashed curves were

obtained from the empirical relations, Eqs. (18) and (5) for E=EM.
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close to unity is usually characterized by small UG=ðgDÞ0:5. The contribution of this paper is that it
presents methods (perhaps, for the first time), for correlating measurements, which directly ac-
count for the influence of gravitational settling. Two approaches are explored:

1. Empirical relations for the entrainment in horizontal pipes at low UG and for vertical pipes at
high UG are used.

2. A theoretical analysis of particle turbulence is used to obtain a general relation for RD which is
valid both for large and small UG=ðgDÞ0:5.

An important simplifying assumption is that the influence of liquid flow is introduced only in
the definition of EM. Thus, equations for RA and RD which are strictly valid only for small WL are
used. The justification for this approach is the observation that E=EM is much more sensitive to
changes in UG than to changes in WL. The influences of WL, such as shown in Fig. 1, are not
considered. Instead, measurements of E=EM for different WL, at a fixed UG, are averaged. These
hE=EMi are then used to test correlations that are developed.

The empirical approach involves the use of Eq. (18) with A2 ¼ 9� 108 to calculate E at small
UG and Eq. (3) with kD ¼ ðr2

P=2pÞ
0:5
, k0A ¼ 3� 10�6 at large UG. Another less accurate way of

representing the behavior at large UG is to use Eq. (5) with A1 ¼ 8:8� 10�5. The important finding
in comparing this approach with experimental results is that it correctly captures the influence of
UG on the measurements of E=EM. However, it is less successful in capturing the effect pipe di-
ameter (and, perhaps, qG) because of uncertainties in specifying the drop diameter and because
the influence of asymmetries on the spatial distribution of the liquid is not directly taken into
account in Eq. (18).

Nevertheless Eq. (18) provides a good first approximation for the entrainment (particularly if
reliable measurements for drop size become available). An improved empirical correlation is
suggested which uses the critical gas velocity, UGC, for the initiation of annular-dispersed flow and
Eq. (23) with d 
 U�1

G . Thus, if UGC is defined as the gas velocity for which ðE=EMÞ=1� ðE=EMÞ
equals some small number, say 0.05, the following equation is developed:

E=EM

1� ðE=EMÞ
¼ 0:05

UG

UGC

� �3 UG

UGC

� �ð1þmÞ=ð2�mÞ

: ð58Þ

A correlation for UGC would then provide a definition of the influence of pipe diameter and fluid
properties.

The analytical approach uses Eq. (13) with k0A ¼ 3� 10�6 and hkDCW=CBi specified as the
products of VW, given by Eq. (31), and CW=CB, given by Eq. (53). This provides a theoretical
description of how the behavior of E=EM changes from one in which gravitational settling con-
trols, to one in which particle turbulence controls the rate of deposition. The implementation of
this theory is handicapped because of the sparcity of measurements of drop size, because of the
need for an improved theoretical analysis of how drops distribute in the gas phase and because
of the sparcity of measurements of entrainment in horizontal pipes. Nevertheless, the analysis
should provide a good first approximation for entrainment in horizontal flows for liquids
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whose viscosity is close to that of water – and a better approximation when more data become
available.
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